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The paper discusses four well known problems concerning polymeric glasses and argues that since 
glassification occurs in many systems, the simplest system, that of polymers, should be investigated first. 
The central result is a direct derivation of the Vogel-Fulcher/Williams-Landel-Ferry formula. 
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INTRODUCTION 

This paper is based on two aspects of glass theory. First, 
that the phenomenon of the glass transition seems to be 
universal: any system of molecules, or indeed atoms, if 
cooled sufficiently quickly forms a glass. There are shared 
properties that all glasses appear to have. It follows from 
this that, just as there are simple and very complex crystal 
systems having features in common, which are under- 
stood by considering the simplest system, so we should 
look at the simplest systems of glassy materials. Simplest 
is meant here from the viewpoint of a theoretical 
physicist--the simplest for a theorist is not usually the 
easiest system to use experimentally. A short list of truly 
universal properties will be given and the simplest model, 
which is in fact that of polymers, will be solved. 

Second, there are properties of polymeric glasses that 
are not shared by glasses of simple molecules. In 
particular, the molecular weight of polymers is, in effect, 
a continuous variable and one can consider the glass 
transition temperature and molecular weight, Tg (M), in 
a way that would not be useful in a series of compact 
molecules. Also, polymers are easily studied in blends, 
including glassy blends, with reasonably well attested 
laws 1,2. 

UNIVERSAL RESULTS IN GLASSES 

Problem 1. When a liquid cools, its viscosity (r/) and 
its inverse diffusivity increase in a law discovered and 
rediscovered by many investigators: Vogel, Fulcher, 
Williams, Landel, Ferry, Dolittle, and no doubt many 
others. The structure is known to mathematicians as an 
essential singularity: 

~=Aexp  + T _ T g  

thus when (log tl/A)-1 is plotted, a straight line results. 
Although the plot sometimes shows some curvature, 
which would correspond to (T-Tg) ~, this formula does 
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seem to have a vast validity and, in the form used by 
Williams-Landel-Ferry (WLF) 

(log ~/)-1 _ T -  Tg (2) 
B + ( T -  Tg)IogA 

is used as the standard form for polymeric systems. A 
central position in glass theory must be given to this 
formula. A theory that cannot give a reasonably direct 
and simple derivation of this formula is a dubious basis 
for the study of more complex systems. 

Problem 2. The glass transition depends on the short 
timescale of the rate of cooling, i.e. T~ (T) is the simplest 
way to express this. One can argue that the degrees of 
freedom of the material can be divided into those of short 
and of long relaxation times, and the long relaxation 
times relate to configurational rearrangements. There 
should then be the same kind of quasi-thermodynamics 
for systems that have two bands of relaxation times and, 
although obviously it can only be approximate, this 
should allow some quantification of how Tg depends on T. 

Turning now to problems that are specific to polymeric 
systems, there are two well known problems. 

Problem 3. Polymers form glasses easily, as do blends 
of compatible polymers. A new variable now charac- 
terizes the glass transition: the relative densities of the 
two components. Suppose the proportions of polymers 1 
and 2 are ~b~ and ~b 2, then ~bl+~b2=l. Then it is well 
established that 

1 ~'1 ~2 
- -  - + (3)  
Tg(blend) Tg, Tg, 

is a good approximation to the dependence of Tg on the 
blend proportions. Can we derive this? 

Problem 4. Accurate distributions of molecular weights 
are available in many cases, to the extent that one can 
study the dependence of the glass transition on the 
molecular weight, i.e. the length of the polymer. The law 
given by Flory and Fox 3 8 is a reasonable approximation: 

1 
Ts(M ) = Tg(oo) -- ~ constant (4) 
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Can we derive this law, and evaluate the constant 
involved? 

MODEL OF POLYMERIC SYSTEMS 

The model to be adopted is the tube model, introduced 
to give a simple description of concentrated polymeric 
systems. This model is capable of giving rise to useful 
constitutive equations for melts and offers a way of 
coping with the topological constraints of polymers, 
which, whilst being intuitively obvious, are virtually 
impossible on a rigorous mathematical basis. 

The model is illustrated in the diagrams below. 
Imagining the other polymers represented by dots as they 
pass through the plane of the polymer of interest (the 
'plane' being taken as wig for simplicity), the (long) 
polymer of interest behaves as if confined by a tube. The 
tube is, roughly speaking, a random walk of step length 
a and of radius also of order a. The polymer between the 
kinks of the tube is said to have the entanglement 
molecular weight Me. These concepts are spelled out in 
detail by Doi and Edwards 7 and the reader is referred 
to this for deeper justification of the utility of the model. 

The complex movement of the polymer between its 
neighbours is reduced by Doi and Edwards to the 
movement along the axis of the tube, called the primitive 
path, by the polymer, which is reduced to a line polymer 
called the primitive chain. The complex movement of 
reptation is thus reduced to the sliding of a smooth chain 
backwards and forwards in Brownian motion, but with 
one degree of freedom. Thus we have a sequence: 

In order to approach problem 1, the sequence is taken 
one stage further by making the tube and primitive chain 
rectilinear. This will be inadequate for problem 4 but, 
perhaps surprisingly, it is good enough to solve problems 
1 and 3. Thus the sequence now goes: 

Q 
The refinement required to handle problem 4 is to note 

that in addition to obstruction experienced by the 
polymer in exiting from its tube (thereby creating new 

tube in the melt) if it meets an obstacle there are also 
obstacles along the path, e.g. 

@ o  

The monomers can only pass if, for example, arrows are 
followed. 

An assembly of perfectly smooth straight cylinders will 
be shown to give rise to the Vogel-Fulcher (VF) law, 
but not to the Flory-Fox law. 

DERIVATION OF THE VOGEL-FULCHER LAW 

Before deriving the law, it should be emphasized again 
that since so many diverse systems show the glass tran- 
sition, it is worth seeking out the simplest. It is well known 
in phase transition problems that the closer one can get 
to mean field conditions, the easier it is to calculate. Thus 
a crystal in d~> 4 dimensions, i.e. a crystal with a large 
number of nearest neighbours (mathematically, even if 
not physically possible), is rigorously solved by mean 
field methods. For spheres, the number of nearest 
neighbours is N,~<12, but for rods N, can be made as 
large as one likes. This means that the rod molecule can 
be rigorously described by the tube of its neighbours, 
and slides backwards and forwards under Brownian 
motion, in some pervading background fluid. 

It was shown by Edwards and Evans 8 that the mean 
diffusion constant for such a system of randomly oriented 
sliding rods wasS: 

D=Do[1- ~----~(cdL2)3/21 (5) 

where Do is the diffusion constant when dilute and c is 
the concentration of rods of diameter d and length L. It 
will be appreciated that if d is a consequence of the effect 
of hard and soft forces and xT, and D O is expected to be 
proportional to T, this form is equivalent to: 

o ooo(  ,) ,6, 
or in terms of pressure: 

D D= o1(P-1)- -  (7) 
Pg 

It was further shown by Edwards and Vilgis 9 that if 
corrections to the above picture were envisaged such that, 
for example, the configuration could by 'shuffling', i.e. 
slightly bending the rods, be got into the otherwise 
inaccessible configuration 
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one could add up such effects in terms of the number of 
ways a 'shuffle' could be constructed. 

The result is to modify the series expansion of D-1. 

O=Do(1 - A )  (8) 
i.e. from 

D - t = D o l ( I + A + A 2 +  ... +An...) (9) 

into 

] (10, 
and by summing parametrically: 

D-X=Do 1 e-x( 1 A)+ B~/xdx (11) 

(12) = D o  1 exp 4(i--A) 

by steepest descent as A--* 1. This immediately allows an 
attack on problem 3, because when types 1 and 2 are 
present the A parameter becomes 

A 1 =(~)(cdlL1) 3/2 (13) 

with weight ~b 1, and the first order perturbation effect is: 

D-I=Dot( I  +d#IAI +c~2A2 + ...) (14) 

Careful counting shows a series which is indeed geometric 
in 

{blA 1 + q~2A 2 (15) 
so that 

D = Do(1 - ~b 1A 1 - ~bzA2) (16) 

To put these manipulations into temperature form one 
needs to write them in the form given above: 

o:ooo(  1) 

where now the expansion will give rise to 

~D1 (~2 1 
+ - (18) 

T,, T,2 T, 

as expected. 
This is a rather crude argument and a fuller analysis, 

with a direct derivation relying on the interactions of the 
molecules appearing in the effective diameter d, hence d 
is d(T), gives rise to more complicated forms. Neverthe- 
less, there is here an outline derivation of the form valid 
over a modest range of 4} values. The arguments given 
here also extend to the VF region near T,. 

M O L E C U L A R  W E I G H T  D E P E N D E N C E  OF T 8 

A physical model that has considerable success is to 
regard the entanglements which give rise to the tube as 
represented by hoops at entanglement points, i.e. a 
picture such as 
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Crude as this is, it is capable of giving interesting 
constitutive equations, for example for rubber. 

The glass transition can now be thought of as being 
caused by blockages at the ends of the tube and by 
blockages at the entanglement points. The total number 
of problem points is now L/a + 1, of which two are ends, 
and L/a -2  interior points. These will make different 
contributions to the value of the glass transition tempera- 
ture, so that, with Tg(~) (the value of Tg as L~oo): 

where 7 is a numerical factor. 
The essence of this argument is that whatever causes 

the glass transition causes it in a way that recurs down 
the chain, varying only at the ends. To obtain y one will 
need a molecular picture. The problem is similar to that 
used in the relaxation of stress. The original Doi-Edwards 
picture was that stress only relaxed at the ends in the 
registration process. This has been challenged by des 
Cloizeaux 1°, who suggests that when the end of a polymer 
disengages from neighbours, not only does that polymer 
relax, but the neighbours do also. This would be like 
putting ?(L/a) in the above formula, whereas the 
Doi-Edwards picture would be 7=0.  In this problem 
neither picture is adequate. 

THE PROBL E M  OF THE C O O L I N G  RATE 

Suppose one makes the enormous simplification of 
dividing the degrees of freedom of a liquid into fast modes 
and slow modes. Suppose one now argues that as the 
liquid cools, the fast modes, by far the most numerous, 
give rise to the temperature, but the slow modes, 
essentially the rearrangement of molecular configura- 
tions, are not in equilibrium and relax slowly. Suppose 
the liquid is glass forming, and if cooled rapidly forms a 
glass, but one that is not yet in thermal equilibrium, 
which is only achieved after a further time 11. 

A crude description of the way the system relaxes is 
to find an appropriate single variable that characterizes 
the departure of the configurational entropy from that 
of equilibrium. If one thinks of the number of ways of 
packing the molecules into a volume V, exp S(V), the 
appropriate intensive variable is 8V/8S in analogy to 
temperature 8E/~S (refs 8 and 9). 

In thermal equilibrium 

~V ~V ~E T 
- - ( 2 1 )  

8S 8E 8S P 

so if we denote 8V/8S by X, calculated from the actual 
number of configurations available in V, Z = X -  (T/P) is 
the measure suggested. Thus if the cooling rate is T and 
the initial temperature, retained by the configuration, is 
To: 

( 8 ~ )  at To--(  T ) at T (22) 

=,8~r (23) 
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where z is the time of cooling and fl is a constant  
characteristic of  the material. 

Thus 

• . ~2V 
f i T =  • T ( ~ f f ~ )  (24) 

and 

dZ 1 
- -  + - Z = / ~ T  (25) 
8t 

is the equat ion governing relaxation from the initial glass 
temperature to the final. 

C O N C L U S I O N  

This paper consists of  some very simple models of  
situations arising in the glassification of  polymer  melts. 
It is a great pleasure to contribute to a symposium in 

honour  of Professor Ian  Ward  who has taught  us so 
much about  the fascinating region between the solid and 
liquid phases of  polymers. 
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